Developmental I Review B

"Your future started yesterday"

1.2 Adding and Subtracting

Two \qquad numbers, add them and keep the sign.

Ex. Simplify
$7+5=$
$13+8=$

Two \qquad numbers, add them and keep the sign.

Ex. Simplify

$$
-7+(-5)=\quad-13+(-8)=
$$

\qquad then subtract the numbers and
keep the sign of \qquad number.

Ex. Simplify

$$
-7+5=\quad 13+(-8)=
$$

If \qquad parentheses, \qquad
change it to a big \qquad sign.

Ex.

$$
-7-(-5)=
$$

$$
13-(-8)=
$$

Homework Checklis \dagger
\square Section 1.3 and 1.4 Adding and Subtracting

1.5 Multiplying and Dividing

Same Signs

If the signs are the \qquad the answer is positive.

Ex. Simplify
$-\frac{2}{3} \cdot-\frac{4}{5}=$

$$
\frac{56}{9}=
$$

Different Signs

If the signs are the \qquad the answer is negative.

Ex. Simplify

$$
\frac{1}{4}(-2.6)=\quad-\frac{2.8}{2}=
$$

Multiplying Decimal

When multiplying with decimals, multiply \qquad .

Afterwards, \qquad

That is how many numbers should be behind the decimal.

Ex. Simplify
$(3.3)(.02)=$
$(.004)(13)=$

Dividing Decimal

1. Set up as \qquad problem.
2. Move the \qquad decimal to the \qquad _.
3. Move the \qquad decimal exactly the same.

Ex. Simplify
$\frac{3.3}{.02}=$

Homework Checklis \dagger
\square Section 1.5 Multiplying and Dividing

1.6 EXPONENTS

How many time do I multiply the number I see?

Ex. Rewrite
$2^{3}=$
$7^{5}=$
$5 \cdot 5 \cdot 5 \cdot 5=$

If \qquad number and an \qquad exponent, my answer will be \qquad .

If \qquad number and an \qquad exponent, my answer will be \qquad .

Ex. Simplify

$$
(-2)^{2}=\quad(-1)^{23}=
$$

Where is the negative?
If the negative is \qquad the parentheses my number with the exponent is \qquad .

If the negative is \qquad the parentheses my
number with the exponent is \qquad .

* The negative comes later in the problem, after the exponent *

Ex. Simplify

$$
2^{2}=\quad(-2)^{2}=\quad-2^{2}=
$$

Exponent Vocabulary

The exponent number 2, is read as \qquad .

The exponent number 3, is read as \qquad _.

Any other number is read as the \qquad .

Ex. Rewrite
14 squared $=\quad$ three cubed $=\quad 8$ to the $7^{\text {th }}$ power $=$

1.6 Absolute Value and Order of Operations

I can remember PEMDAS as: \qquad

p

\qquad
Absolute value bars make the inside number \qquad _.

E \qquad
Radicals (\qquad) are included in this category.

M \qquad
D \qquad
A

S

For multiplication and division, the order doesn't \qquad ـ.

You do whatever comes first from left to right.
For addition and subtraction, the order doesn' \dagger \qquad .

You do whatever comes first from left to right.

Ex. Simplify
$\frac{-3(3+2)+5}{8-3(-4)}=$
$-4\left|3^{2}-5\right|+[-4+7(2)] \div|-5|=$

